

On the effect of upwind emission controls on ozone in Sequoia National Park

Claire E. Buysse¹, Jessica A. Munyan², Clara A. Bailey², Alexander Kotsakis³, Jessica A. Sagona⁴, Annie Esperanza⁵, Sally E. Pusede²

- ¹Department of Atmospheric Sciences, University of Washington, Seattle, Washington, 98195, USA
 ²Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, 22904, USA
 ³Department of Earth and Atmospheric Sciences, University of Houston, Houston, Texas, 77204, USA
 ⁴New Hampshire Environmental Department of Health and Human Services, Division of Public Health Services, Concord, New Hampshire, 03301, USA
- 10 ⁵National Park Service, Sequoia and Kings Canyon National Parks, Three Rivers, California, 49093, USA

Correspondence to: Sally E. Pusede (sepusede@virginia.edu)

Abstract. Sequoia National Park (SNP) experiences the worst ozone (O₃) pollution of any national park in the U.S. SNP is located on the western slope of the Sierra Nevada Mountains, downwind of the San Joaquin Valley (SJV), which is home to

- 15 numerous cities ranked among the most O_3 -polluted in the U.S. Here, we investigate the influence of emission controls in the directly upwind SJV city of Visalia on O_3 concentrations in SNP over a 12-yr time period (2001–2012). We show that export of nitrogen oxides (NO_x) from the SJV plays a larger role in driving high O_3 in SNP than does transport of O_3 . As a result, O_3 in SNP has been more responsive to NO_x emission reductions as a function of increasing downwind distance from the SJV. We report O_3 trends by various concentration metrics, but do so separately for when environmental conditions are conducive
- to plant O_3 uptake and for when high O_3 is most common, which are time periods that occur at different times of day and year. We find that precursor emission controls have been less effective at reducing O_3 concentrations in SNP in springtime, which is when plant O_3 uptake in Sierra Nevada forests has been previously measured to be greatest. We discuss the implications of regulatory focus on high O_3 days in SJV cities on O_3 concentration trends and impacts in SNP.

1 Introduction

- 25 Sequoia National Park (SNP) is a unique and treasured ecosystem that is also the most ozone-polluted national park in the U.S. (Meyer and Esperanza, 2016). Ozone (O₃) concentrations in SNP exceeded the current human health-based 8-h O₃ National Ambient Air Quality Standard (NAAQS), defined as 70 ppb, on an average of 119 days per year over the time period 2001–2012. At the same time, there were on average 76 8-h NAAQS exceedances per year in Los Angeles, California, 36 per year in Denver, Colorado, and 55 per year in Phoenix, Arizona, cities which are three of the most O₃-polluted U.S. cities (American
- 30 Lung Association, 2016).

5

While O₃ is harmful to humans, it is also damaging to plants and ecosystems (e.g., Reich, 1987), with visible O₃ injury observed in many forests across the U.S. (Costonis, 1970; Pronos and Vogler, 1981; Ashmore, 2005), including in SNP (Peterson et al., 1987; Peterson et al., 1991; Patterson and Rundel, 1995; Grulke et al., 1996; National Park Service, 2013). O₃ exposure also causes a variety of other effects such as decreased plant growth (Wittig et al., 2009), reduced photosynthesis and disrupted carbon assimilation (Wittig et al., 2007; Fares et al., 2013), diminished ecosystem gross and net primary productivity (Ainsworth et al., 2012; Wittig et al., 2009), modified plant resource allocation (Ashmore, 2005), and impaired stomatal response (Paoletti and Grulke, 2010; Hoshika et al., 2014). On multi-decadal timescales, O₃-resistant plants may thrive over O₃-sensitive species, system-level dynamics that would maintain forest productivity and carbon storage, but would induce changes in ecosystem composition (Wang et al., 2016).

- 10 SNP is home to more than 1,550 plant taxa with numerous plant species found nowhere else on Earth (Schwartz et al., 2013). One endemic species is the giant sequoia (*Sequoiadendron giganteum*), the largest living tree in the world. Large-tree ecosystems like SNP have been shown to be more sensitive to perturbation (Lutz et al., 2012) because ecological functions are provided primarily by a few large trees, rather than many smaller species. Large-diameter trees disproportionately influence patterns of tree regeneration and forest succession (Keeton and Franklin, 2005), carbon and nutrient storage, forest structure
- 15 and fuel deposition at death, arboreal wildlife habitats and epiphyte communities (Lutz et al., 2012), and water storage (Sillett and Pelt, 2007), which is of critical importance in drought-prone SNP. While mature sequoias are relatively resistant to O₃, seedlings are sensitive, and high O₃ has been demonstrated to cause both visible injury and altered plant-atmosphere light and gas exchange (Miller et al., 1994). Giant sequoias grow in mixed-conifer groves with companion species ponderosa pine (*Pinus ponderosa*) and Jeffrey pine (*Pinus jeffreyi*). O₃ impacts on these pines have been documented for decades in SNP (Duriscoe,
- 20 1987; Pronos and Vogler, 1981) and include early needle loss, reduced growth, decreased photosynthesis, and lowered annual ring width (Peterson et al., 1987; Peterson et al., 1991).

SNP is located in Central California on the western slope of the Sierra Nevada Mountains downwind of the O_3 -polluted San Joaquin Valley (SJV) (Figure 1). Previous model estimates suggest at least half of peak daytime O_3 in SNP is produced upwind from anthropogenic precursors (Jacobson, 2001). For the past two decades, regulations have reduced O_3 concentrations

in the SJV (Pusede and Cohen, 2012). For example, in Fresno, high O₃ days, defined as days exceeding the 70 ppb 8-h O₃ NAAQS, were 50% less frequent in 2007–2010 than ten years earlier (on high temperature days). At the same time, in Bakersfield, high O₃ days were 15–40% less frequent (on high temperature days). NO_x emission controls contributed to these decreases (Pusede and Cohen, 2012), with summertime (April–October) daytime (10 am–3 pm local time, LT) nitrogen dioxide (NO₂) concentrations falling by 50% from 2001 to 2012, changing linearly by –0.5 ppb yr⁻¹ in the SJV city of Visalia. The reductions in precursor emissions that brought about these decreases in high O₃ are likely to have also affected SNP.

The success of O_3 regulatory strategies is generally measured through attainment of human health-based NAAQS rather than ecosystem-impact metrics. While there is a secondary standard requirement aimed at vegetation protection, it has historically been the same as the primary NAAQS (Environmental Protection Agency, 2016). Plants and ecosystems have been shown to be sensitive to lower O_3 concentrations, over longer-term exposures, and at different times of day and year than when

5

NAAQS exceedances are frequent (e.g., Kurpius et al., 2002; Panek 2004; Panek and Ustin 2005; Fares et al., 2013). The U.S. Environmental Protection Agency (EPA) has considered redefining the secondary standard to reflect ecological systems, with the W126 metric put forth (Environmental Protection Agency, 2010). W126 is a 12-h daily summation weighted to emphasize higher O₃ concentrations that is used by the U.S. National Park Service. There are a number of other concentration metrics used to quantify ecosystem O₃ impacts. In Europe, the AOT40 index is equal to all daytime (defined as solar radiation \geq 50 W m⁻²) hourly O₃ concentrations greater than 40 ppb. In the U.S., two widely used indices are the SUM0 and SUM06 (Panek et al., 2002), which are the sum of all daytime hourly O₃ mixing ratios greater than or equal to 0 ppb and 60 ppb, respectively.

Even ecosystem-based concentration metrics are proxies of variable quality for O_3 impacts, if O_3 concentrations are not well correlated with plant O_3 uptake (e.g., Emberson et al., 2000; Panek et al., 2002; Panek, 2004; Fares et al., 2010a). This is

- because of temporal mismatches between when O_3 is high and when plants uptake O_3 from the atmosphere, with differences in high O_3 and efficient O_3 uptake occurring on both diurnal and seasonal timescales. While O_3 impacts are best represented by direct measurements of the O_3 stomatal flux (e.g., Musselman et al., 2006; Fares et al., 2010a; Fares et al., 2010b), exceedances of flux-based standards are difficult to operationalize, as there are few long-term O_3 flux observational records and because reported thresholds, when available, are highly species-specific (Mills et al., 2011).
- 15 Under the 1977 Clean Air Act Amendments, selected national parks were designated as Class I Federal areas and, as part of this, the National Park Service began measuring O₃ concentrations in the late 1980s, prioritizing national parks downwind of cities and polluted areas, including SNP (National Park Service, 2015a). Data from these monitors can be used to compute various O₃ concentration metrics; however, direct flux measurements do not exist in SNP, or other national parks, over long enough timescales to assess the effects of multi-year emissions controls. Forest survey data, which assess O₃ impacts by
- 20 monitoring changes in plants and forests from visible injury records and species population estimates, are limited, as they are labor and time intensive, requiring the evaluation of at least dozens of trees per stand to distinguish moderate levels of injury (Duriscoe et al., 1996). These studies occur at some time interval after exposure, making correlation to specific O_3 concentrations not possible. As a result, there is a need to assess trends using concentration metrics, but to do so with knowledge of when plant O_3 uptake is greatest.
- In this paper, we report O_3 trends from 2001 to 2012 in SNP and the upwind SJV city of Visalia to study the effect of SJV emission controls on SNP O_3 . We compute trends in human health and ecosystem-based concentration metrics separately when regional environmental conditions favor plant O_3 uptake (springtime) and when high O_3 is most frequent (O_3 season). We describe these O_3 changes in Visalia and SNP as function of distance downwind of Visalia. We demonstrate the importance of transport of urban NO_x from the SJV on O_3 production (PO_3) chemistry in SNP. Finally, we discuss the descriptive power
- 30 of various O_3 metrics, considering the implications of a regulatory focus on human health-based standards to improve O_3 air pollution and to reduce ecosystem impacts in SNP and polluted downwind ecosystems more broadly.

5

2 Sequoia National Park (SNP) and the San Joaquin Valley (SJV)

SNP is located in the southern Sierra Nevada Mountains (Figure 1) and is part of the largest continuous wilderness in the contiguous U.S., which includes Kings Canyon NP and Yosemite NP. The SJV extends 250 miles in length and is situated between the Southern Coast Ranges to the west, the Sierra Nevada Mountains to the east, and the Tehachapi Mountains to the south. The southern SJV is the most productive agricultural region in the U.S., an oil and gas development area, and home to the cities of Fresno, Visalia, and Bakersfield. The same climatic conditions that support agriculture in the region, especially the numerous sunny days, are also favorable for *PO*₃. The high rates of local *PO*₃ (Pusede and Cohen, 2012; Pusede et al., 2014), diverse local emission sources outside historical regulatory focus, e.g., agricultural and energy development activities (e.g., Gentner et al., 2014a; Gentner et al., 2014b; Pusede and Cohen, 2012; Park et al., 2013), and surrounding mountain

10 ranges that impede air flow out of the valley, have resulted in severe regional O₃ pollution. Four SJV cities rank among the ten most-O₃ polluted cities in the U.S.: Bakersfield (ranked 2), Fresno (3), Visalia (4) and Modesto-Merced (6) (American Lung Association, 2016).

Multiple airflow patterns influence O_3 in SNP and the SJV (Zhong et al., 2004). First, summertime (April–October) afternoon low-level winds in the southern SJV are generally from the west-northwest (represented by Visalia in Figure 2).

- 15 These winds are strengthened by an extended land-sea breeze, with onshore flow entering central California through the Carquinez Strait near the San Francisco Bay and diverging to the south into the SJV and north to the Sacramento Valley (e.g., Zaremba and Carroll, 1999; Dillon et al., 2002; Beaver and Palazoglu, 2009; Bianco et al., 2011). Second, at night, a recurring local flow pattern in the SJV, known as the Fresno eddy, recirculates air in the southern region of the valley around Bakersfield in the counterclockwise direction back to Fresno and Visalia, further enhancing O₃ pollution and precursors in these cities
- 20 (e.g., Ewell et al., 1989; Beaver and Palazoglu, 2009). Third, the most populous and O₃ polluted cities in the southern SJV, Fresno, Visalia, and Bakersfield, are located along the eastern valley edge. Here, air movement is also affected by mountain-valley flow (e.g., Lamanna and Goldstein 1999; Zhong et al., 2004; Trousdell et al., 2016). During the day, thermally-driven upslope flow brings air from the valley floor to higher mountain elevations from the west-southwest (Figure 2). In Figure 3, a high elevation SNP site (Moro Rock, 36.5469 N, 118.7656 W, 2050 m ASL) is visibly above the SJV surface layer in the late
- 25 morning, but within this polluted layer in late afternoon. At night, the direction of flow reverses and air moves downslope from the east-northeast (Figure 2). Due to the prevalence of shallow nighttime surface inversions, evening downslope valley flow at higher elevations may be stored within nocturnal residual layers and entrained into the surface layer the following morning.

3 Results

30 High O₃ days are most frequent in SNP and the SJV in the summer and early fall (Pusede and Cohen, 2012; Meyer and Esperanza, 2016), as *PO*₃ chemistry is strongly temperature-dependent (Pusede et al., 2015), particularly in the SJV (Pusede

5

and Cohen, 2012; Pusede et al., 2014). O_3 season is defined here as June–October and 90% of annual 8-h O_3 NAAQS exceedances in SNP occur during O_3 season (2001–2012).

In the Sierra Nevada foothills, high rates of plant O₃ uptake are asynchronous with O₃ season due to the Mediterranean climate (e.g., Kurpius et al., 2002; Kurpius et al., 2003; Panek, 2004). Because plants also capture carbon dioxide required for photosynthesis and transpire through stomata, O₃ uptake is not only a function of the atmospheric O₃ concentration, but also of photosynthetically-active radiation (PAR), the inverse of the atmospheric vapour pressure deficit (VPD) (Kavassalis and Murphy, 2017), and soil moisture (e.g., Reich, 1987; Bauer et al., 2000; Fares et al., 2013). In SNP, PAR is highest in the late spring through early fall and VPD is at a minimum in winter and spring. In the Sierra Nevada Mountains, plant water status (VPD and soil moisture) has been shown to explain up to 80% of day-to-day variability in stomatal conductance, with

10 conductance decreasing with increasing water stress from mid-May to September and remaining low until soils are resaturated by wintertime precipitation. Plant O_3 uptake in Sierra Nevada forests has been reported to be greatest in April–May (Kurpius et al., 2002; Panek, 2004; Panek and Ustin, 2005).

In this context, we separately consider O_3 trends in springtime (April–May), which is when plant O_3 uptake best correlates with variability in atmospheric O_3 concentrations in the region, and during O_3 season (June–October), which is when O_3 15 concentrations are highest.

3.1 Diurnal O₃ variability

Diurnal O₃ and O_x ($O_x \equiv O_3 + NO_2$) concentrations are shown in Figure 4 in springtime (panel a) and O₃ season (panel b) from 2001–2012. O₃ data in SNP are collected at two monitoring stations, a lower elevation site, SNP-Ash Mountain (36.489 N, 118.829 W), at 515 m above sea level (ASL) and a higher elevation site, SNP-Lower Kaweah (36.566 N, 118.778 W), at 1926

- 20 m ASL (Figure 1). We refer to these stations as SEQ1 and SEQ2, respectively. O_3 and NO_2 data are measured in Visalia (36.333 N, 119.291 W), directly upwind of SNP at 102 m ASL. All data are provided by the California Air Resources Board and are available for download at https://www.arb.ca.gov/aqmis2/aqdselect.php. In Figure 4, Visalia data are shown as O_x to account for the portion of O_3 stored as NO_2 , which can be substantial in the nearfield of fresh NO_x emissions and at night. NO_2 data are not available in SEQ1 and SEQ2; however, these sites are removed from large NO_x sources (Figure 1) and $O_3 \approx O_x$ is
- 25 a reasonable approximation.

In Visalia, O_x concentrations increase sharply beginning in early morning (5 am LT) until 2 pm LT, continuing to rise slightly until 4–5 pm LT (Figure 4). This diurnal pattern reflects a combination of local PO_3 (the initial rise) and advection of O_x from the upwind source region (late afternoon maximum). In the morning (8 am LT) 30–40% of O_x is NO₂ and at 12 pm LT ~10% of O_x is NO₂.

30 Diurnal O_3 variability at SEQ1 and SEQ2 is characterized by two features, an early morning rise (6 am LT) and an increase in the late afternoon (3–4 pm LT). The timing of this morning O_3 increase is consistent with entrainment of O_3 in nocturnal residual layers aloft during morning boundary layer growth. The influence is substantial, as morning O_3 accounts for 50% (springtime and O_3 season) of the daily change in O_3 at SEQ1 and 50% (springtime) and 37% (O_3 season) of the daily

5

change in O_3 at SEQ2. The timing of afternoon peak O_3 is consistent with upslope air transport from the SJV (Figures 2). If O_3 attributed to local PO_3 in Visalia is greatest around 2 pm LT, typical of many urban locations, then with mean winds at SEQ1 of 3 m s⁻¹ and SEQ2 of 2 m s⁻¹, we expect O_3 to peak in SEQ1 at ~5 pm (45 km downwind of Visalia) and at SEQ2 shortly after (9.6 km downwind of SEQ1), which is generally what we observe. Data in Figure 4 are averaged over 2001–2012 and there has been no change in the hour of peak O_3 at either SNP site from 2001–2012.

3.2 Weekday-weekend O₃ variability

SNP and the SJV are in close geographic proximity but their local *PO*₃ regimes are different. In 2016, as part of the Korea-U.S. Air Quality (KORUS-AQ) experiment (https://www-air.larc.nasa.gov/missions/korus-aq/index.html) and Student Airborne Research Program (SARP), the NASA DC-8 sampled a low-altitude transect (~130 m above ground level) along the

- 10 trajectory of SJV mountain-valley outflow. The DC-8 flew at ~10 am LT from Orange Cove, an SJV town 35 km north of Visalia, 24 km up the western slope of the Sierra Nevada Mountains to an elevation of ~1000 m ASL. In Figure 5, the change in NO_x and isoprene along this transect is shown as a function of change in surface elevation. Boundary layer NO_x is observed to decrease with increasing distance downwind of the SJV, while isoprene concentrations increase. Isoprene is a large source of reactivity in the Sierra Nevada foothills (e.g., Beaver et al., 2012) and the combined NO_x and isoprene gradients suggest
- 15 distinct *PO*₃ regimes in the SJV and SNP.

If the major source of O_3 in SNP is O_3 produced in the SJV and transported downwind, then the observed NO_x dependence of PO_3 in SNP and the SJV would be the same even if PO_3 regimes in the two locations were different. To test this hypothesis, we consider O_3 in SNP and O_x in the SJV separately on weekdays and weekends. Weekday-weekend NO_x concentration differences are well-documented across the U.S. (e.g., Russell et al., 2012) and California (e.g., Marr and Harley, 2002; Russell

- et al., 2010), and are caused by reduced weekend heavy-duty diesel truck traffic, where heavy-duty diesel trucks are large sources of NO_x but not O₃ forming organic gases. As a result, NO_x concentrations are typically 30–60% lower on weekends than weekdays and these NO_x changes occur without comparably large decreases in reactive organic compounds (e.g., Pusede et al., 2014). *P*O₃ is the only term in the O₃ derivative expected to exhibit NO_x dependence.
- We focus on the earliest 3-yr time period in our record, 2001–2003, which is when differences in *PO*₃ chemical sensitivity in the SJV and SNP are expected to be most pronounced (Pusede and Cohen, 2012). We define weekdays as Tuesdays–Fridays and weekends as Sundays to avoid atmospheric memory effects. Statistics were sufficient to minimize any co-occurring variation in meteorology, with no significant weekday-weekend differences observed in daily maximum temperature, wind speed, or wind direction. We focus on afternoon (12–6 pm LT) O_x, when O₃ concentrations in SNP are most influenced by the SJV. We also compare weekday-weekend O_x at high and moderate temperatures, with temperature regimes defined as days
- 30 above and below the 2001–2012 seasonal mean daily maximum average temperature in Visalia. Temperatures in Visalia are well correlated ($R^2 = 0.98$) with temperatures in SEQ1 over 2001–2012. During springtime and O₃ season, mean maximum average temperatures in Visalia were 25.1 ± 5.9 and 32.0 ± 5.3 °C (ranges are 1 σ variability), respectively.

At high temperatures, weekday-weekend differences in O_x in Visalia and O_3 at SEQ1 and SEQ2 were not statistically distinct in either springtime or during O_3 season. Averaged across sites, percent differences in weekdays and weekends (relative to weekends) were 9.4 \pm 5.4% in the springtime and 4.1 \pm 2.4% during O_3 season, with greater weekday concentrations implying NO_x-limited chemistry. Errors are the average standard errors of the 3-yr means.

- 5
- At moderate temperatures, statistically significant weekday-weekend differences were observed. During O₃ season, O_x was $6.3 \pm 3.5\%$ higher on weekends than weekdays in Visalia, indicating local *P*O₃ was NO_x suppressed. At the same time, O₃ was $4.6 \pm 3.3\%$ and $4.9 \pm 3.9\%$ higher on weekdays than weekends at SEQ1 and SEQ2, respectively, implying *P*O₃ in SNP was NO_x limited. A similar pattern was observed at moderate temperatures during springtime, as O_x was $7.4 \pm 4.6\%$ higher on weekends than weekdays in Visalia and O₃ was $3.5 \pm 7.4\%$ and $4.7 \pm 5.5\%$ higher on weekdays than weekends in SEQ1 and
- 10 SEQ2. These weekday-weekend patterns indicate a substantial portion of O_3 in SNP is produced by low-NO_x *PO*₃ chemistry during air transport from the SJV. At high temperatures, *PO*₃ during upslope transport is likely occurring, but is not apparent because *PO*₃ is also NO_x limited in Visalia.

3.3 Interannual O₃ variability

In Table 1, we report 12-yr O₃ trends (2001–2012) in SNP and the SJV in springtime and during O₃ season using four concentration metrics: 8-h O₃ NAAQS; two common vegetative-based indices, SUM0 and W126; and a morning average metric. Trends are represented as the percent change from 2001 through 2012 divided by the fit value in SEQ1 in 2001 (the highest O₃ observed for each metric).

The 8-h O_3 NAAQS is a human health-based metric computed as the maximum unweighted daily 8-h average O_3 mixing ratio. SUM0 is equal to the sum of hourly O_3 concentrations over a 12-h daylight period (8 am–8 pm LT). SUM0 is based on

- 20 the assumption that the total O₃ dose has a greater impact on plants than shorter duration high O₃ exposures (Kurpius et al., 2002). The summation is unweighted, attributing equal significance to low O₃ concentrations (Musselman et al., 2006). SUM0 averaging is restricted to time periods when stomata are open (daylight), a condition not required for the 8-h O₃ NAAQS. In our SUM0 calculation, we only include days in which there were at least 11 hourly daytime measurements. W126 is a weighted summation (8 am–8 pm LT), assuming higher O₃ is more damaging to plants than lower O₃ levels. W126 weighting is
- sigmoidal, with hourly O_3 weights equal to $(1 + 4403e^{-126[O3]})^{-1}$ (U.S. Environmental Protection Agency 2015). We have followed the protocol for computing W126, which replaces missing data with the minimum measured concentration in the 8 am–8 pm LT time window. We also compute morning (7 am–12 pm LT) trends (O_x in Visalia and O_3 in SNP), as high O_3 plant uptake rates (morning) and high O_3 concentrations (afternoon) are out of phase within daily timeframes in the Sierra Nevada Mountains. Plant O_3 uptake typically follows a pattern of rapid morning uptake, relatively constant flux through
- 30 midday, and a decrease in uptake in afternoon as plants close their stomata to prevent water loss in the hot, dry afternoon (Kurpius et al., 2002; Fares et al., 2013). Efficient morning uptake occurs because plants recharge their water supply overnight, which with low morning temperatures and VPD, results in high stomatal conductance (Bauer et al., 2000). Morning uptake in the Sierra Nevada maximizes in springtime around 8 am LT (Kurpius et al., 2002; Panek and Ustin, 2005; Fares et al., 2013).

5

Three patterns in interannual O₃ variability in SNP emerge (Table 1): (1) O₃ decreased everywhere over the 12-yr record by all metrics in both seasons; (2) O₃ decreased at a slower rate in the springtime than during O₃ season by all metrics; and (3) O₃ decreased more rapidly in SNP than in Visalia and as a function of downwind distance. Seasonal differences are prominent at each site; for example, O₃ at SEQ1 decreased by 40–60% less in springtime than during O₃ season. Additionally, O₃ decreases were generally greater at SEQ1 than Visalia, and always greater at SEQ2 than SEQ1. Over the 12-yr period, the 8h O₃ NAAQS declined 63% (springtime) and 46% (O₃ season) more at SEQ1 than Visalia and 77% (springtime) and 63% (O₃ season) more at SEQ2 than Visalia. SUM0 and W126 O₃ decreased 86% and 52% (springtime) and 69% and 43% (O₃ season) more at SEQ1 than Visalia, and 92% (springtime) and 63% and 78% (O₃ season) more at SEQ2 than Visalia. In the

morning, trends at SEQ1 and Visalia were similar in springtime, but O_3 fell by 57% more at SEQ1 than O_x in Visalia during O_3 season. At SEQ2, morning O_3 decreased 38% (springtime) and 65% (O_3 season) more than O_x in Visalia. For each metric, we observe greater interannual variability relative to the net decline in springtime than during O_3 season.

3.4 Past and future exceedances

High O_3 is often defined by exceedances of O_3 thresholds. To better understand the effects of regulatory strategies in SNP, we examine past trends and predict future O_3 levels in the context of protective thresholds. Currently, the human-health

- based 8-h O_3 NAAQS is 70 ppb and, while there is no standard for SUM0, there are three time-integrated W126 protective thresholds. These are: 5–9 ppm h to protect against visible foliar injury to natural ecosystems, 7–13 ppm h to protect against growth effects to tree seedlings in natural forest stands, and 9–14 ppm h to protect against growth effects to tree seedlings in plantations, with exceedances recorded over a rolling 3-month time window (Heck and Cowling 1997). In Table 2, we show the mean number of 8-h O_3 NAAOS exceedances per year (rounded up) in 2001–2002 and 2011–2012 and the predicted
- 20 exceedances in 2021–2022 and 2031–2032 in springtime and during O₃ season. We also report the average number of days (rounded up) required to exceed the three W126 protective thresholds (5, 7, and 9 ppm h), summing daily W126 indices starting with the first day of springtime and O₃ season (1 April and 1 June) over the next three months. We only present springtime data, as the W126 metric has been shown to poorly correspond to plant O₃ uptake in late summer in Sierra Nevada forests (Panek et al., 2002; Kurpius et al., 2002; Bauer et al., 2000). Future exceedances are computed assuming individual daily
- 25 indices continue to decline at the 2001–2012 rate and are projected from 2011–2012 values.
 - In each case, we find there were fewer exceedances (8-h O₃ NAAQS) or more days until exceedance (W126) in 2011– 2012 than at the start of the record, with declines generally linear over the 12-yr period. As with trends in the mean metrics, we observe greater declines at SEQ2 than SEQ1, with 24% (springtime) and 45% (O₃ season) larger reductions in the frequency of NAAQS exceedances at SEQ2 than SEQ1. For comparison, in Visalia there were 15 8-h O₃ NAAQS exceedances in 2001–
- 30 2002 and 6 in 2011–2012 in springtime and 68 (2001–2002) and 42 (2011–2012) exceedances during O_3 season. Eighteen to 24 more days were required in 2011–2012 than in 2001–2002 for the cumulative daily W126 index to exceed the three protective thresholds at SEQ2 in springtime. Only 3–13 more days were required at SEQ1 and changes at SEQ1 were 20–36% smaller than observed at SEQ2.

5

If past decreases in O_3 continue over the next two decades, we predict no exceedances of the 8-h O_3 NAAQS at SEQ2 by 2021 in springtime and by 2031 during O_3 season, no exceedance of the 9-ppm h W126 threshold by 2021, and no further exceedances of 5- and 7-ppm h thresholds by 2031. O_3 reductions at past rates are not sizable enough to eliminate future exceedances of either 8-h O_3 NAAQS or W126 thresholds at SEQ1. Models suggest that W126 in the region would be well below these thresholds in the absence of anthropogenic precursor emissions (Lapina et al., 2013), implying further controls would be effective. Because PO_3 in SNP is NO_x limited, future NO_x reductions are expected to have as large an impact on local PO_3 as past reductions. NO_x emissions should continue to decline, as there are significant controls currently in the implementation phase, including more stringent national rules on heavy-duty diesel engines (Environmental Protection Agency, 2000) combined with California Air Resources Board (CARB) diesel engine retrofit-replacement requirements

10 (California Air Resources Board, 2008), and more stringent CARB standards for gasoline-powered vehicles (California Air Resources Board, 2012).

4 Discussion

4.1 O₃ metrics

- 15 Long-term measurements of O₃ fluxes rather than O₃ concentrations are required to fully understand the effects of upwind emission controls on O₃ impacts. This is particularly true in Mediterranean ecosystems like SNP and under drought conditions (e.g., Panek et al., 2002), which is where and when plant O₃ uptake and high atmospheric O₃ concentrations may not be correlated. We have based our analysis on results from years of O₃ flux data collected in forests on the eastern slope of the Sierra Nevada Mountains (Bauer et al., 2000; Panek and Goldstein, 2001; Panek et al., 2002; Kurpius et al., 2002; Fares et al.,
- 20 2010; Fares et al., 2013); however, there are few other O₃ flux datasets that span multiyear timescales and no flux observations in SNP. In California, flux measurements suggest springtime SUM0 trends offer the most insight into trends in O₃ impacts in SNP; that said, we find similar conclusions would be drawn regarding multiyear O₃ variability by assessing trends in SUM0, 8-h O₃ NAAQS, and our morning O_x metric. This can be explained by the upslope-downslope air flow in our study region and is evident in SNP diurnal O₃ patterns (Figure 4), which show considerable O₃ entrained into the boundary layer in the morning.
- 25 As a result, O₃ concentrations are strongly influenced by afternoon concentrations on the previous day. Comparable trends in morning, afternoon, and daily average O₃ would then arise under conditions of persistence, which are common in Central California, but these results are unlikely to extend to other downwind ecosystems in the absence of an upslope-downslope flow pattern. Dynamically-driven elevated morning O₃ concentrations have important consequences for plants. Vegetation in SNP may be particularly vulnerable because plant O₃ uptake rates are often highest in the morning.
- O_3 reductions predicted by W126 are almost twice those of SUM0. We attribute this to the W126 weighting algorithm that makes the metric most sensitive to changes in the highest O_3 . A similar result was modeled using GEOS-Chem, which found W126 was more responsive than daily (8 am–7 pm, LT) average O_3 concentrations to decreases in anthropogenic

emissions (Lapina et al., 2013). Considering SUM0 has been shown to best correspond to plant O_3 uptake in Sierra Nevada forests (Panek et al., 2002), W126 likely provides an overly optimistic representation of past and future trends in O_3 impacts in SNP.

4.2 Reducing high O₃ in polluted downwind ecosystems

- 5 Emission controls have been less effective in SNP when plant O_3 uptake is greatest (springtime), despite comparable NO_x decreases in both seasons. This is in part because regulatory agencies prioritize attainment of the 8-h O₃ NAAQS, with controls developed using models to hindcast past high O₃ episodes and efficacy of NO_x and/or organic emissions reductions tested under conditions typifying O₃ season. In the SJV, high O₃ episodes occur on the hottest days during O₃ season (Pusede and Cohen, 2012; Pusede et al., 2014), leading to policies not optimized to decrease O₃ in cooler springtime conditions.
- 10 NO_x decreases have made greater improvements in O₃ with increasing distance downwind of the SJV. This is because the export of NO_x from SJV has a larger impact on SNP O₃ than does transport of O₃ produced in urban SJV. Evidence for this is four-fold. First, O₃ at SEQ1 is greater than O_x in Visalia, at least during O₃ season, suggesting net O₃ formation as air travels from the SJV to SNP. Second, according to observations of O_x (Visalia) and O₃ (SNP) on weekdays versus weekends, *P*O₃ was simultaneously NO_x suppressed in Visalia and NO_x limited in SNP, with the weekday-weekend dependence of O₃
- 15 reflecting the chemical regime in which it is produced. Third, aircraft observations collected in the direction of daytime upslope flow from the SJV to Sierra Nevada foothills reveal substantial decreases in NO_x concentrations relative to isoprene, a key contributor to total organic reactivity (e.g., Beaver et al., 2012). Fourth, O₃ decreases (2001–2012) are observed to be greater in SNP than Visalia, and greater with increasing distance downwind. This implies that *PO*₃ in Visalia and SNP is differently sensitive to emission controls, with SNP more responsive to NO_x emissions control than Visalia.
- An additional challenge to regulators is that high-elevation locations in the Sierra Nevada Mountains are also receptor sites for O₃ and O₃ precursors transported across the Pacific Ocean from east Asia (e.g., Vicars and Sickman, 2001; Heald et al., 2003; Hudman et al., 2004). Northern mid-latitude transport of Asian pollution to the western U.S. is strongest during March–April and weakest in the summertime (e.g., Wild and Akimoto, 2001; Liu et al., 2003; Liu et al., 2005). Hudman et al. (2004) compared surface observations with modeled O₃ enhancements in Asian pollution outflow, finding that, on average,
- transport events in April–May 2002 led to 8 ± 2 ppb higher 8-h O₃ concentrations at SEQ2. East Asian NO_x emissions have risen over our study window (e.g., Miyazaki et al., 2017), causing an increase in the influence of trans-Pacific transport on O₃ concentrations at SEQ2, and reducing the efficacy of NO_x control in springtime. While we do observe smaller decreases in O₃ in springtime at SEQ2 than during O₃ season, interannual trends have been more downward at SEQ2 than at the lower elevation sites, SEQ1 and Visalia, in both seasons. This suggests that while east-Asian pollution impacts surface O₃ at high-elevations
- 30 in SNP during individual events, interannual trends in seasonal averages are more influenced by chemistry during upslope outflow from the SJV, and, as such, O₃ can be regulated accordingly.

5 Conclusions

We describe O_3 trends at two locations in SNP and in the upwind SJV city of Visalia. We show that a major portion of the O_3 concentration in SNP is formed during transport from NO_x emitted in the SJV, rather than from O_3 produced in Visalia and subsequently transported downwind. Evidence for this includes greater O_3 at SEQ1 than O_x in Visalia during O_3 season (Figure

5 4), distinct weekday-weekend O_3 differences in SNP and Visalia, steep gradients in NO_x and isoprene measured in the direction of upslope airflow out of the SJV within the boundary layer (Figure 5), and larger O_3 decreases over 2001–2012 with increasing distance from Visalia (Table 1). NO_x emission controls in Visalia have reduced O_3 in SNP even when PO_3 in Visalia was NO_xsuppressed.

We compute interannual O_3 trends using human health and ecosystem-based concentration metrics in springtime and O_3 10 season separately, in order to distinguish between O_3 impacts (plant O_3 uptake) and high O_3 concentrations. We find that O_3 has decreased in SNP and Visalia by all metrics in both seasons, but that ongoing NO_x emission controls have been less effective in springtime when uptake is greatest. The metrics, SUM0, 8-h O_3 NAAQS, and morning O_x , indicate comparable reductions in O_3 over 2001–2012, with decreases of ~7% (springtime) and ~13% (O_3 season) at SEQ1 and ~13% (springtime) and ~18% (O_3 season) at SEQ2. We attribute similarity across these three metrics to upslope-downslope airflow at the western

- edge of the SJV, as morning O_x and SUM0 are strongly affected by high afternoon O_3 concentrations on the previous day due the mixing of O_3 -polluted nocturnal residual layers into the surface boundary layer. Past O_3 flux observations in the region indicate the highest plant O_3 uptake in the springtime morning, therefore SNP vegetation experiences greater O_3 exposure than in locations without this memory effect. W126 has predicted O_3 decreases over 2001–2012 that are almost double SUM0. While W126 emphasis of higher O_3 concentrations gives the most optimistic evaluation of the efficacy of past emission
- 20 controls, our future projections of days required to exceed W126 protective thresholds suggests that much larger decreases in NO_x emissions than took place 2001–2012 are required to eliminate O_3 impacts on vegetation in SNP over the next two decades.

Diurnal and seasonal mismatches between plant O_3 uptake rates and O_3 concentration-based metrics make it challenging to accurately assess vegetative O_3 damage and to quantitatively evaluate the success of regulatory action. Future work would

25 benefit from the development of an environmentally and biologically-relevant metric that captures patterns in plant O_3 uptake over daily and seasonal timescales, especially in Mediterranean ecosystems, where conditions conducive to plant O_3 uptake are asynchronous with conditions that lead to high O_3 concentrations.

Acknowledgements

Funding was provided by the NASA Student Airborne Research Program (SARP), National Suborbital Education and Research Center (NSERC), and the NASA Airborne Science Program (ASP). SEP was supported by NASA grant NNX16AC17G. We thank Philipp Eichler, Tomas Mikoviny and Armin Wisthaler for providing the DC-8 isoprene data. Isoprene measurements during KORUS-AQ were supported by the Austrian Federal Ministry for Transport, Innovation and Technology (bmvit)

through the Austrian Space Applications Programme (ASAP) of the Austrian Research Promotion Agency (FFG). We thank Andrew Weinheimer at the National Center for Atmospheric Research for the providing the DC-8 NO and NO₂ measurements. We thank the pilots and crew of the NASA DC-8 and the KORUS-AQ science team. We acknowledge the California Air Resources Board for use of publicly available O₃, NO₂, wind, and temperature measurements.

5 References

Ainsworth, E. A., Yendrek, C. R., Sitch, S., Collins, W. J., and Emberson, L. D.: The effects of tropospheric ozone on net primary productivity and implications for climate change, Ann. Rev. Plant Biol., 63, 637–661, doi:10.1146/annurevarplant-042110-103829, 2012.

American Lung Association, State of the Air 2016: http://www.lung.org/our-initiatives/healthy-air/sota/, last access: 27

- 10 September 2017, 2016.
 - Ashmore, M. R.: Assessing the future global impacts of ozone on vegetation, Plant Cell Environ., 28, 949–964, doi:10.1111/j.1365-3040.2005.01341.x, 2005.
 - Bauer, M. R., Hultman, N. E., Panek, J. A., and Goldstein, A. H.: Ozone deposition to a ponderosa pine plantation in the Sierra Nevada Mountains (CA): a comparison of two different climatic years, J. Geophys. Res.-Atmos., 105 (D17), 22123–
- 15 22136, doi:10.1029/2000JD900168, 2000.
 - Beaver, M. R., Clair, J. M. S., Paulot, F., Spencer, K. M., Crounse, J. D., LaFranchi, B. W., Min, K. E., Pusede, S. E., Wooldridge, P. J., Schade, G. W., Park, C., Cohen, R. C., and Wennberg, P. O.: Importance of biogenic precursors to the budget of organic nitrates: observations of multifunctional organic nitrates by CIMS and TD-LIF during BEARPEX 2009, Atmos. Chem. Phys., 12, 5773–5785, doi:10.5194/acp-12-5773-2012, 2012.
- 20 Beaver, S., and Palazoglu, A.: Influence of synoptic and mesoscale meteorology on ozone pollution potential for San Joaquin Valley of California, Atmos. Environ., 43, 1779–1788, doi:10.1016/j.atmosenv.2008.12.034, 2009.
 - Bianco, L., Djalalova, I. V., King, C. W., and Wilczak, J. M.: Diurnal evolution and annual variability of boundary-layer height and its correlation to other meteorological variables in California's Central Valley, Bound. Layer Meteorol., 140, 491– 511, doi:10.1007/s10546-011-9622-4, 2011.
- 25 California Air Resources Board, Regulation to reduce emissions of diesel particulate matter, oxides of nitrogen and other criteria pollutants, from in-use heavy-duty diesel-fueled vehicles: http://www.arb.ca.gov/msprog/onrdiesel/regulation.htm, last access: 16 September 2017, 2008.
 - California Air Resources Board, California's advanced clean cars program: https://www.arb.ca.gov/msprog/acc/acc.htm, last access: 16 September 2017, 2012
- Costonis, A.: Acute foliar injury of eastern white pine induced by sulfur dioxide and ozone, Phytopathology, 60, 994, 1970.
 Diffenbaugh, N. S., Swain, D. L., and Touma, D.: Anthropogenic warming has increased drought risk in California, Proc. Natl. Acad. Sci., 112, 3931–3936, doi:10.1073/pnas.1422385112, 2015.

- Dillon, M. B., Lamanna, M. S., Schade, G. W., Goldstein, A. H., and Cohen, R. C.: Chemical evolution of the Sacramento urban plume: transport and oxidation, J. Geophys. Res.-Atmos., 107 (D5), ACH 3-1-ACH 3-15, doi:10.1029/2001JD000969, 2002.
- Duriscoe, D., Evaluation of ozone injury to selected tree species in Sequoia and Kings Canyon National Parks; 1985 Survey Results; National Park Service, Air Resources Division: Denver, Colorado, 1987.
- Duriscoe, D., Stolte, K., and Pronos, J.: History of ozone injury monitoring methods and the development of a recommended protocol. In: Miller, P. R., Stolte, K. W., Duriscoe, D. M., Pronos, J., technical coordinators. Evaluating ozone air pollution effects on pines in the western United States. Gen. Tech. Rep. PSW–GTR–155. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture, 1996.
- 10 Emberson, L., Ashmore, M. R., Cambridge, H. M., Simpson, D., and Tuovinen, J. P.: Modelling stomatal ozone flux across Europe, Environ. Pollut., 109, 403–413, 2000.
 - Environmental Protection Agency, Regulations for smog, soot, and other air pollution from commercial trucks and buses: https://www.epa.gov/regulations-emissions-vehicles-and-engines/final-rule-control-emissions-air-pollution-2004-andlater, last access: 16 September 2017, 2000.
- 15 Environmental Protection Agency, Table of historical ozone national ambient air quality standards (NAAQS): https://www.epa.gov/ozone-pollution/table-historical-ozone-national-ambient-air-quality-standards-naaqs, last access 20 September 2016, 2015.
 - Environmental Protection Agency, Ozone W126 index: https://www.epa.gov/air-quality-analysis/ozone-w126-index, last access: 27 October 2016, 2016.
- 20 Ewell, D. M., Flocchini, R. G., Myrup, L. O., and Cahill, T. A.: Aerosol transport in the Southern Sierra Nevada, J. Appl. Meteorol., 28, 112–125, doi:10.1175/1520-0450(1989)028<0112:ATITSS>2.0.CO;2, 1989.
 - Fares, S., Goldstein, A., and Loreto, F.: Determinants of ozone fluxes and metrics for ozone risk assessment in plants, J. Exp. Bot. 61, 629–633, doi:10.1093/jxb/erp336, 2010a.
 - Fares, S., McKay, M., Holzinger, R., and Goldstein, A. H.: Ozone fluxes in a Pinus ponderosa ecosystem are dominated by
- 25 non-stomatal processes: evidence from long-term continuous measurements, Ag. Forest Meteorol. 150, 420–431, doi:10.1016/j.agrformet.2010.01.007, 2010b.
 - Fares, S., Vargas, R., Detto, M., Goldstein, A. H., Karlik, J., Paoletti, E., and Vitale, M.: Tropospheric ozone reduces carbon assimilation in trees: estimates from analysis of continuous flux measurements, Global Change Biol., 19, 2427–2443, doi:10.1111/gcb.12222, 2013.
- 30 Funk, C.; Hoell, A.; Stone, D., Examining the contribution of the observed global warming trend to the California droughts of 2012/13 and 2013/14, Bull. Amer. Meteorol. Soc., 95, S11–S15, 2014.
 - Gentner, D. R., Ford, T. B., Guha, A., Boulanger, K., Brioude, J., Angevine, W. M., de Gouw, J. A., Warneke, C., Gilman, J. B., Ryerson, T. B., Peischl, J., Meinardi, S., Blake, D. R., Atlas, E., Lonneman, W. A., Kleindienst, T. E., Beaver, M. R., Clair, J. M. S., Wennberg, P. O., VandenBoer, T. C., Markovic, M. Z., Murphy, J. G., Harley, R. A., and Goldstein, A.

5

H.: Emissions of organic carbon and methane from petroleum and dairy operations in California's San Joaquin Valley, Atmos. Chem. Phys., 14, 4955–4978, doi:10.5194/acp-14-4955-2014, 2014a.

- Gentner, D. R., Ormeño, E., Fares, S., Ford, T. B., Weber, R., Park, J. H., Brioude, J., Angevine, W. M., Karlik, J. F., and Goldstein, A. H.: Emissions of terpenoids, benzenoids, and other biogenic gas-phase organic compounds from agricultural crops and their potential implications for air quality, Atmos. Chem. Phys., 14, 5393–5413, doi:10.5194/acp-14-5393-2014, 2014b.
- Griffin, D., and Anchukaitis, K. J.: How unusual is the 2012–2014 California drought? Geophys. Res. Lett., 41, 9017–9023, doi:10.1002/2014GL062433, 2014.
- Grulke, N. E., Miller, P. R., and Scioli, D.: Response of giant sequoia canopy foliage to elevated concentrations of atmospheric
- 10 ozone, Tree Physiol., 16, 575–581, 1996.
 - Heald, C. L., Jacob, D. J., Fiore, A. M., Emmons, L. K., Gille, J. C., Deeter, M. N., Warner, J., Edwards, D. P., Crawford, J. H., Hamlin, A. J., Sachse, G. W., Browell, E. V., Avery, M. A., Vay, S. A., Westberg, D. J., Blake, D. R., Singh, H. B., Sandholm, S. T., Talbot, R. W., and Fuelberg, H. E.: Asian outflow and trans-Pacific transport of carbon monoxide and ozone pollution: an integrated satellite, aircraft, and model perspective, J. Geophys. Res.-Atmos., 108 (D24), how to the proceeding approximate the proceeding of the processing of the proceeding of the proceeding
- 15 doi:10.1029/2003JD003507, 2003.
 - Heck, W. W. and Cowling, E. B.: The need for a long-term cumulative secondary ozone standard–an ecological perspective, Environ. Manager, pp. 23–33, Air Waste Mange. Assoc., Pittsburgh, Pa., January, 1997.
 - Hoshika, Y., Carriero, G., Feng, Z., Zhang, Y., and Paoletti, E.: Determinants of stomatal sluggishness in ozone-exposed deciduous tree species, Sci. Total Environ., 481, 453–458, doi:10.1016/j.scitotenv.2014.02.080, 2014.
- Hudman, R. C., Jacob, D. J., Cooper, O. R., Evans, M. J., Heald, C. L., Park, R. J., Fehsenfeld, F., Flocke, F., Holloway, J., Hübler, G., Kita, K., Koike, M., Kondo, Y., Neuman, A., Nowak, J., Oltmans, S., Parrish, D., Roberts, J. M., and Ryerson, T.: Ozone production in transpacific Asian pollution plumes and implications for ozone air quality in California, J. Geophys. Res.-Atmos., 109 (D23), doi:10.1029/2004JD004974, 2004.
 - Jacobson, M. Z.: GATOR-GCMM 2. A study of daytime and nighttime ozone layers aloft, ozone in national parks, and
- 25 weather during the SARMAP field campaign, J. Geophys. Res.-Atmos., 106 (D6), 5403–5420, doi:10.1029/2000JD900559, 2001.
 - Kavassalis, S. C., and Murphy, J. G.: Understanding ozone-meteorology correlations: a role for dry deposition, Geophys. Res. Lett., 44, 2922–2931, doi:10.1002/2016GL071791, 2017.
- Keeton, W. S., and Franklin, J. F.: Do remnant old-growth trees accelerate rates of succession in mature Douglas-fir forests?
 Ecol. Monogr., 75, 103–118, doi:10.1890/03-0626, 2005.
 - Kurpius, M. R., McKay, M., and Goldstein, A. H.: Annual ozone deposition to a Sierra Nevada ponderosa pine plantation, Atmos. Environ., 36, 4503–4515, doi:10.1016/S1352-2310(02)00423-5, 2002.
 - Kurpius, M. R., Panek, J. A., Nikolov, N. T., McKay, M., and Goldstein, A. H.: Partitioning of water flux in a Sierra Nevada ponderosa pine plantation, Ag. Forest Meteorol., 117, 173–192, doi:10.1016/S1068-1923(03)00062-5, 2003.

- Lamanna, M. S., and Goldstein, A. H.: In situ measurements of C_2-C_{10} volatile organic compounds above a Sierra Nevada ponderosa pine plantation, J. Geophys. Res.-Atmos., 104, 21247-21262, doi:10.1029/1999JD900289, 1999.
- Lapina, K., Henze, D. K., Milford, J. B., Huang, M., Lin, M., Fiore, A. M., Carmichael, G., Pfister, G., and Bowman, K.: Assessment of source contributions to seasonal vegetative exposure to ozone in the U.S., J. Geophys. Res.-Atmos., 119 2169-8996, doi:10.1002/2013JD020905, 2014.
- Liu, H., Jacob, D. J., Bey, I., Yantosca, R. M., Duncan, B. N., and Sachse, G. W.: Transport pathways for Asian pollution outflow over the Pacific: Interannual and seasonal variations, J. Geophys. Res.-Atmos., 108 (D20), doi:10.1029/2002JD003102, 2003.
- Liu, J., Mauzerall, D. L., and Horowitz, L. W.: Analysis of seasonal and interannual variability in transpacific transport, J.
- 10 Geophys. Res.-Atmos., 110 (D4), doi:10.1029/2004JD005207, 2005.
 - Lutz, J. A., Larson, A. J., Swanson, M. E., and Freund, J. A.: Ecological importance of large-diameter trees in a temperate mixed-conifer forest, Plos One, 7, e36131, doi:10.1371/journal.pone.0036131, 2012.
 - Marr, L. C., and Harley, R. A.: Spectral analysis of weekday-weekend differences in ambient ozone, nitrogen oxide, and nonmethane hydrocarbon time series in California, Atmos. Environ., 36, 2327-2335, doi:10.1016/S1352-2310(02)00188-7, 2002.
- 15

- Meyer, E., and Esperanza, A.: 2015 Sequoia and Kings Canyon Ozone Annual Report, Natural Resource Data Report NPS/SEKI/NRR, Denver, Colorado, 2016.
- Miller, P., Grulke, N., and Stolte, K.: In Air pollution effects on giant sequoia ecosystems, Symposium on giant sequoias: there place in the ecosystem and society, Visalia, CA. USDA Forest Service PSW GTR-151, 90-98, 1994.
- Mills, G., Pleijel, H., Braun, S., Büker, P., Bermejo, V., Calvo, E., Danielsson, H., Emberson, L., Fernández, I. G., Grünhage, 20 L., Harmens, H., Hayes, F., Karlsson, P.-E., and Simpson, D.: New stomatal flux-based critical levels for ozone effects on vegetation, Atmos. Environ., 45, 5064–5068, doi:10.1016/j.atmosenv.2011.06.009, 2011.
 - Miyazaki, K., Eskes, H., Sudo, K., Boersma, K. F., Bowman, K., and Kanaya, Y.: Decadal changes in global surface NO_x emissions from multi-constituent satellite data assimilation, Atmos. Chem. Phys., 17, 807–837, doi:10.5194/acp-17-807-2017, 2017.
- 25
 - Musselman, R. C., Lefohn, A. S., Massman, W. J., and Heath, R. L.: A critical review and analysis of the use of exposure- and flux-based ozone indices for predicting vegetation effects, Atmos., Environ., 40. 1869 - 1888,doi:10.1016/j.atmosenv.2005.10.064, 2006.
 - National Park Service, Air quality in national parks: trends (2000–2009) and conditions (2005–2009), Natural Resource Report
- 30 NPS/NRSS/ARD/NRR 2013/683, Denver, Colorado, 2013.
 - National Park Service, Air quality monitoring history database: https://www.nature.nps.gov/air/monitoring/index.cfm, last access: 27 September 2017, 2015a.
 - National Park Service, DRAFT National Park Service Air Quality Analysis Methods; Natural Resource Report NPS/NRSS/ARD/NRR-2015/XXX; Lakewood, CO, 2015b.

- Panek, J. A. and Goldstein, A. H., Response of stomatal conductance to drought in ponderosa pine: implications for carbon and ozone uptake, Tree Physol., 21, 337–344, 2001.
- Panek, J. A., Kurpius, M. R., and Goldstein, A. H.: An evaluation of ozone exposure metrics for a seasonally drought-stressed ponderosa pine ecosystem, Environ. Pollut., 117, 93–100, 2002.
- 5 Panek, J. A.: Ozone uptake, water loss and carbon exchange dynamics in annually drought-stressed Pinus ponderosa forests: measured trends and parameters for uptake modeling, Tree Physiol., 24, 277–290, 2004.
 - Panek, J. A., and Ustin, S. L.: Ozone uptake in relation to water availability in ponderosa pine forests: measurements, modeling, and remote-sensing, 2004 final report to National Park Service under PMIS 76735, 2005.
 - Paoletti, E., and Grulke, N. E.: Ozone exposure and stomatal sluggishness in different plant physiognomic classes, Environ.
- 10 Pollut., 158, 2664–2671, 2010.
 - Park, J.-H., Goldstein, A. H., Timkovsky, J., Fares, S., Weber, R., Karlik, J., and Holzinger, R.: Active atmosphere-ecosystem exchange of the vast majority of detected volatile organic compounds, Science, 341, 643–647, 2013.
 - Patterson, M. T., and Rundel, P. W.: Stand characteristics of ozone-stressed populations of Pinus jeffreyi (pinaceae): extent, development, and physiological consequences of visible injury, Am. J. Bot., 82, 150–158, 1995.
- 15 Peterson, D. L., Arbaugh, M. J., Wakefield, V. A., and Miller, P. R.: Evidence of growth reduction in ozone-injured Jeffrey pine (Pinus jeffreyi Grev. and Balf.) in Sequoia and Kings Canyon National Parks, J. Air Poll. Control Assoc., 37, 906– 912, 1987.
 - Peterson, D. L., Arbaugh, M. J., and Robinson, L. J.: Regional growth changes in ozone-stressed ponderosa pine (Pinus ponderosa) in the Sierra Nevada, California, USA, Holocene, 1, 50–61, doi:10.1177/095968369100100107, 1991.
- 20 Pronos, J., and Vogler, D. R.: Assessment of ozone injury to pines in the Southern Sierra Nevada, USDA, Forest Service, Pacific Southwest Region, State and Private Forestry, Forest Pest Management, 1981.
 - Pusede, S. E., and Cohen, R. C.: On the observed response of ozone to NO_x and VOC reactivity reductions in San Joaquin Valley California 1995–present, Atmos. Chem. Phys., 12, 8323–8339, doi:10.5194/acp-12-8323-2012, 2012.
 - Pusede, S. E., Gentner, D. R., Wooldridge, P. J., Browne, E. C., Rollins, A. W., Min, K. E., Russell, A. R., Thomas, J., Zhang,
- L., Brune, W. H., Henry, S. B., DiGangi, J. P., Keutsch, F. N., Harrold, S. A., Thornton, J. A., Beaver, M. R., St. Clair, J. M., Wennberg, P. O., Sanders, J., Ren, X., VandenBoer, T. C., Markovic, M. Z., Guha, A., Weber, R., Goldstein, A. H., and Cohen, R. C.: On the temperature dependence of organic reactivity, nitrogen oxides, ozone production, and the impact of emission controls in San Joaquin Valley, California, Atmos. Chem. Phys. 14, 3373–3395, doi:10.5194/acp-14-3373-2014, 2014.
- 30 Pusede, S. E., Steiner, A. L., and Cohen, R. C.: Temperature and recent trends in the chemistry of continental surface ozone, Chem. Rev., 115, 3898–3918, doi:10.1021/cr5006815, 2015.
 - Reich, P. B.: Quantifying plant response to ozone: a unifying theory, Tree Physiol., 3, 63–91, 1987.

- Russell, A. R., Valin, L. C., Bucsela, E. J., Wenig, M. O., and Cohen, R. C.: Space-based constraints on spatial and temporal patterns of NO_x emissions in California, 2005–2008, Environ. Sci. Technol., 44, 3608–3615, doi:10.1021/es903451j, 2010.
- Russell, A. R., Perring, A. E., Valin, L. C., Bucsela, E. J., Browne, E. C., Wooldridge, P. J., and Cohen, R. C.: A high spatial

- resolution retrieval of NO_2 column densities from OM: method and evaluation, Atmos. Chem. Phys. 11, 8543–8554, doi:10.5194/acp-11-8543-2011, 2011.
- Russell, A. R., Valin, L. C., and Cohen, R. C.: Trends in OMI NO₂ observations over the United States: effects of emission control technology and the economic recession, Atmos. Chem. Phys., 12, 12197–12209, doi:10.5194/acp-12-12197-2012, 2012.
- 10 Schwartz, M. W., Thorne, J., and Holguin., A.: A natural resource condition assessment for Sequoia and Kings Canyon National Parks, Appendix 20a – biodiversity, Natural Resource Report NPS/SEKI/NRR 2013/665.20a; Fort Collins, Colorado, 2013.
 - Sillett, S. C., and Pelt, R. V.: Trunk reiteration promotes epiphytes and water storage in an old-growth redwood forest canopy, Ecol. Monogr., 77, 335–359, doi:10.1890/06-0994.1, 2007.
- 15 Trousdell, J. F., Conley, S. A., Post, A., and Faloona, I. C.: Observing entrainment mixing, photochemical ozone production, and regional methane emissions by aircraft using a simple mixed-layer framework, Atmos. Chem. Phys., 16, 15433– 15450, doi:10.5194/acp-16-15433-2016, 2016.
 - Vicars, W. C. and Sickman, J. O.: Mineral dust transport to the Sierra Nevada, California: loading rates and potential source areas, J. Geophys. Res., 116, G01018, doi:10.1029/2010JG001394, 2011.
- 20 van Wagtendonk, J. W., and Moore, P. E.: Fuel deposition rates of montane and subalpine conifers in the central Sierra Nevada, California, USA, Forest Ecol. Manage., 259, 2122–2132, doi:10.1016/j.foreco.2010.02.024, 2010.
 - Wang, B., Shugart, H. H., Shuman, J. K., and Lerdau, M. T.: Forests and ozone: productivity, carbon storage, and feedbacks, Sci. Rep., 6, 22133, doi:10.1038/srep22133, 2016.
 - Wild, O., and Akimoto, H.: Intercontinental transport of ozone and its precursors in a three-dimensional global CTM, J.
- 25 Geophys. Res.-Atmos., 106, 27729–27744, doi:10.1029/2000JD000123, 2001.
 - Wittig, V. E., Ainsworth, E. A., and Long, S. P.: To what extent do current and projected increases in surface ozone affect photosynthesis and stomatal conductance of trees? A meta-analytic review of the last 3 decades of experiments, Plant Cell Environ., 30, 1150–1162, doi:10.1111/j.1365-3040.2007.01717.x, 2007.
 - Wittig, V. E., Ainsworth, E. A., Naidu, S. L., Karnosky, D. F., and Long, S. P.: Quantifying the impact of current and future
- tropospheric ozone on tree biomass, growth, physiology and biochemistry: a quantitative meta-analysis, Global Change
 Biol., 15, 396–424, doi:10.1111/j.1365-2486.2008.01774.x, 2009.
 - Zaremba, L. L., and Carroll, J. J.: Summer wind flow regimes over the Sacramento Valley, J. Appl. Meteorol., 38, 1463–1473, doi:10.1175/1520-0450(1999)038<1463:SWFROT>2.0.CO;2, 1999.

Zhong, S., Whiteman, C. D., and Bian, X.: Diurnal evolution of three-dimensional wind and temperature structure in California's Central Valley, J. Appl. Meteorol., 43, 1679–1699, doi:10.1175/JAM2154.1, 2004.

5

Figure 1. Map of California (**left**) with study region detail (**right**) indicating the locations of the SJV station, Visalia (orange), and two monitoring sites in SNP, SEQ1 (cyan) and SEQ2 (dark blue), with mean April–October, 2010–2012 OMI NO₂ columns using the BEHR (Berkeley High-Resolution) product (Russell et al., 2011).

Figure 2. Hourly mean wind directions in Visalia (orange diamonds), SEQ1 (cyan filled circles), and SEQ2 (dark blue open circles) in April–October, 2001–2012.

Figure 3. Looking toward the SJV from Moro Rock in SNP (36.5469 N, 118.7656 W; 2050 m ASL) at 11 am LT (panel a) and 5:30 pm LT (panel b). Photographs were taken by the authors on 29 June 2017.

Figure 4. Hourly mean O_x in Visalia (orange diamonds), SEQ1 (cyan filled circles), and SEQ2 (dark blue open circles) in springtime (panel a) and during O_3 season (panel b) 2001–2012. Data gaps are due to routine calibrations.

Figure 5. NO_x (brown open circles) and isoprene (green filled circles) measured onboard the NASA DC-8 at \sim 10 am LT at the Sierra Nevada western slope from a mean altitude of 130 m AGL to 1000 m AGL on 19 June, 2016. The surface elevation is estimated by linearly interpolating across the total elevation change.

Table 1. Percent change in Visalia, SEQ1, and SEQ2 over 2001–2012 in 8-h O₃ NAAQS, SUM0, W126, and morning O_x metrics based on a linear fit of annual mean data in the springtime and O_3 season with respect to fit value in 2000 at SEQ1 during O_3 season.

O ₃ metric	8-h NAAQS	SUM0	W126	Morning O _x
	Spri	ngtime (April–M	(ay)	
SEQ2	-13	-13	-22	-13
SEQ1	-8	-7	-14	-6
Visalia	-3	-1	-8	-8
	O ₃ se	ason (June–Octo	ber)	
SEQ2	-19	-18	-43	-17
SEQ1	-13	-13	-29	-14
Visalia	-7	-4	-14	-6

10

Table 2. Mean exceedances per year (rounded up) of the springtime and O₃ season 8-h O₃ NAAQS and days required for an exceedance of the springtime 5-, 7-, and 9-ppm h W126 protective thresholds at SEQ1 and SEQ2. Data are averaged over 2001–2002 and 2011–2012 and projected (*) for years 2021–2022 and 2031–2032 assuming past 12-yr trends continue (from 2011–2012 levels). Italicization indicates no exceedance of the W126 occurred (within 3-months) and *never* indicates the threshold would not be exceeded over the course of the year.

O ₃ metric	8-h NAAQS		W126 (springtime)			
	Springtime	O ₃ season	5-ppm h	7-ppm h	9-ppm h	
SEQ2						
2001-2002	13	103	41	46	49	
2011-2012	3	63	59	65	73	
2021-2022*	0	4	81	91	107	
2031-2032*	0	0	never	never	never	
SEQ1						
2001-2002	21	121	37	41	45	
2011-2012	10	99	40	49	58	
2021-2022*	6	67	48	61	68	
2031-2032*	2	15	65	75	82	